Home » 2 Parity Patterns

2 Parity Patterns

Last update: 4-30-2018

These patterns describe the first half of a number’s divisor parity set, as the second half is just a mirror image of the first half.

In the below sequences I am searching up to the number 25,000,000.

How to read the following listings

Numbers having the divisor parity of: 222: are A143928 — 2*p^2

p will always stand for a prime number and the A***** numbers are links to the corresponding sequence at The On-Line Encyclopedia of Integer Sequences. After the characters — will be a further description of the sequence.


only 2 or 1: A000040 — The prime numbers.

all 2’s: A016825 — Numbers of the form 4n+2.
22: A100484 and A001747 — 2*p^1
222: A143928 — 2*p^2
2222: 30, 42, 54, 66, 70, 78, 102, 110, 114, 130, 138, …
22222: A172191 — 2*p^4
222222: 90, 126, 150, 198, 234, 294, 306, 342, 350, 414, 486, …
2222222: 2*p^6
22222222: 210, 270, 330, 378, 390, 462, 510, 546, 570, 594, 690, …
222222222: n/2/p(n)^2=9 — 5^2*18
2222222222: 810, 1134, 1782, 2106, 2754, 3078, 3726, 3750, 4698, 5022, 5994, …
22222222222: 118098, 19531250 or also written as: 2*3^10 and 2*5^10
counting the number of 2’s in this sequence yields: A099774 — Number of divisors of 2*n-1. basically the odds

all 1’s: A005408 — The odd numbers: a(n) = 2n+1. —specific number of 1’s are…????
mixed 1’s and 2’s: A008586 — Multiples of 4. — a(n) = 4n
start 2, middle 1’s — A000079 — Powers of 2: a(n) = 2^n
for each middle 1 2^(2*middle zero count) matches two numbers the first is a square and the second is twice the first
example: 21111 = 2^8 and 2*(2^8) first number is (2^4)^2

start 2, middle 1’s end 2: nothing preexisting as a whole
starting p seems to increment at A014210 — Next prime after 2^n.
212: p*2^2 — starts at p=3
2112: p*2^3 — starts at p=5
21112: p*2^4 — starts at p=11
211112: p*2^5 — starts at p=17
2111112: p*2^6 — starts at p=37

repeating 21’s: 4,8,24,120
each one added yields the next term in: A007283 — 3*2^n.
2121: 24
21211:48
212111:96
2121111: 192
21211111: 384

first part of pair: A002063 — 9*4^n.
second part of pair: 2*(9*4^n)
21211121: 144
Kamagra is so much well known cheapest cialis among them. The signs of erection problems purchase levitra online are influenced by the severeness of the ailment. It also relieves you from depression, stress and anxiety. best price on viagra Kamagra is one of the most popular erectile dysfunction drugs out in the market viagra sales in canada today. 212111211: 288
2121112111: nothing?
21211121111: 576
212111211111: 1152
2121112111111: nothing?
21211121111111: 2304
212111211111111: 4608
2121112111111111: nothing?
21211121111111111: 9216
212111211111111111: 18432

each one added yields the next set of terms in: A070875 and A063920
21121: 80, 112
211211: 160, 224
2112111: 320, 448
21121111: 640, 896

each one yields more terms in: A160825 — a(2n) = 13*2^(n-2) and a(2n+1) = 11*2^(n-1) if n >= 2.
211121: 352, 416
2111211: 704, 832
21112111: 1408, 1664

2112: p*8
21121: 5*16 and 7*16 also written as 80 and 112
211211: 5*32 and 7*32 also written as 160 and 224
2112111: 5*64 and 7*64 also written as 320 and 448
21121111: 5*128 and 7*128 also written as 640 and 896
211211111: 5*256 and 7*256 also written as 1280 and 1792

212112: 72
21211212: p*24
21211221: 168, 216, 264 — 7,9,11 * 24
21221: numbers seem to always be squares and: A069262 — Numbers n such that sum(d|n,(-1)^d)=3.
……or(prime^2)*4
my finding is (2p)^2
212221: when these numbers are divided by 4 they yield: A082663
21212121:120
212212: 84, 108, 132, 156, 204, 220, 228, 260, 276, 340…
212212212: 588, 684, 828, 972, 1044…
212212212212: 3612, 3948, 4116, 4452, 4956, 5060, 5124, 5500, 5628, 5964, 6132…
2112: 8*p
211221: 8*(p^2)
21122121: 0, 760, 952, 1064, 1288, 2024, 2552, 2728… — gcd 8?
2112211121: 560
211221112112121: 3920
2121111221: 624, 816, 912, 1104 — primes: 13, 17, 19, 23, * 48
2121111212: 1392, 1488, 1776, 1968, 2064, 2256… primes from 29 on times 48
212212221212: 924, 1092, 1836, 2244, 2508, 3588, 5916, 6324, 6612…
212221212:180
21122112: divide the number by gcd: 8…then this sequence is made up of A161835 and A084968

impossible combinations?
21222